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Resonance in flows with vortex sheets and edges 
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NASA Lewis Research Center, Cleveland, Ohio 44135 

(Received 13 September 1983 and in revised form 5 April 1984) 

It is shown that the vortex sheet in a slot between two semi-infinite plates does not 
admit incompressible resonant perturbations. The semi-infinite vortex sheet entering 
a duct does admit incompressible resonance. These results indicate that the vortex- 
sheet approximation is less useful for impinging shear flows than for non-impinging 
flows. They also suggest an important role of downstream vortical disturbances in 
resonant flows. 

The general solution for perturbations to flow with a vortex sheet and edges is 
written in terms of a Cauchy integral. Requirements on the behaviour of this solution 
at  edges and a t  downstream infinity fix the criteria for resonance. 

1. Introduction 
The phenomenon of self-sustained oscillation of an impinging shear flow has been 

known since the last century (see Rockwell & Naudascher 1979). However, a 
convincing fluid-mechanical analysis of this phenomenon has not yet been made ; 
undoubtedly this is because of the subtlety of the interactions that lead to resonance. 
As a step toward producing such a fluid-mechanical analysis, Crighton & Innes (1981) 
recommended the study of idealized flow configurations in which the shear flow is 
replaced by a vortex sheet and surfaces are replaced by infinitely thin plates. The 
present paper follows that approach, and is further restricted to strictly incompressible 
flow : many experimentally observed resonances seem essentially to be incompressible, 
although without exact solutions for these flows an element of doubt remains. The 
purpose of this paper is to present one such exact solution. 

The usual explanation of resonance in impinging shear flows (such as that sketched 
in figure 1, or that illustrated in figures 2.25 and 2.26 of Goldstein 1976) is that shear- 
flow instabilities originating at  the upstream trailing edge grow into vortices, which 
impinge on the downstream leading edge and produce pressure oscillations which feed 
back to the upstream edge, regenerating the instability waves. The condition for 
resonance to occur is that the phase and amplitude changes around one cycle of this 
process be such that the original disturbance at the trailing edge is exactly 
regenerated by feedback. 

This explanation is imprecise because it is not obvious what one should call the 
‘phase and amplitude changes’ in a fluid flow. Analytically, it is more appropriate 
to associate resonance with eigensolutions to perturbation equations of motion. The 
above explanation also does not consider the fluid-mechanical processes that generate 
the feedback pressure at the downstream edge and which regenerate the instability 
waves at the upstream edge. In the present paper, where vortex sheets replace the 
shear flow, these interactions at edges are represented through edge conditions : the 
upstream condition is the Kutta condition of flow tangency; the downstream con- 
dition requires some special consideration. It is now well established that the Kutta 
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FIGURE 1 .  Mixing-layer-wedge flow. 

condition correctly represents the flow past a trailing edge in the limit of infinite 
Reynolds number and finite frequency (Crighton 1981). 

A method for analysing certain flows with vortex sheets and flat plates was 
presented by Mohring (1975). His method makes use of the analytic properties of 
the complex velocity potential, and a t  one stage certain arbitrary analytic functions 
are introduced into the analysis. These functions are subsequently determined by 
specifying edge singularities and the asymptotic behaviour a t  infinity. In $2 we give 
a method of analysis which is more direct than Mohring’s and which is applicable 
to the same class of problems. This class of problems has a geometry that is symmetric 
about the vortex sheet. The approach used herein can be adapted to asymmetrical 
geometries, although closed-form solutions cannot then be found. 

The present method is used to study two flows, one of which possesses resonant 
solutions and one of which does not. The flow without resonance is the slot flow, 
illustrated in figure 2. This flow was analysed by Mohring, who (despite certain errors 
in his solution) concluded that i t  does not admit resonance. Citing Mohring’s errors, 
Crighton & Innes (1981) reanalysed the same slot problem, claiming that no solution 
existed unless a jump in the vortex-sheet displacement is introduced a t  the 
downstream edge. However, in discussing Mohring’s analysis on p. 3 of their paper, 
Crighton & Innes erroneously required certain complex coefficients to be entirely real ; 
apparently they failed to distinguish between Mohring’s imaginary numbers i and 
j. The analysis we give in $ 3  shows that a jump in the vortex-sheet displacement at 
the downstream edge introduces a fictitious source into the flow. Therefore Crighton 
& Innes’ analysis is of a vortex sheet forced by an oscillating source, not of self-excited 
resonant oscillations. Hence their conclusion that this flow possesses resonant 
solutions is a misinterpretation. Similarly Howe’s (1981 a )  solution of this problem, 
which is singular a t  the downstream edge, ought to  be considered a forced solution, 
not a resonant one. However, Howe’s paper dealt mainly with acoustic disturbances 
to vortex sheets, and he also observed that  no resonance could occur if the 
downstream singularity were removed. This agrees with the conclusion reached 
previously by Mohring . 

Presumably resonance can occur in mixing-layer-wedge experiments (figure 1)  
because the mixing layer has a finite width and does not terminate a t  the downstream 
edge as idealized in figure 2. Vortical disturbances then can continue to evolve in the 
shear flow downstream of the leading edge (Goldstein 1981 ; Ziada & Rockwell 1981); 
these vortical disturbances seem to be an essential part of the downstream resonant flow. 
Of course the experimental flow usually contains finite-amplitude vortices, while the 
vortex-sheet analysis is linear, but we suspect that  this is not the source discrepancy. 

After concluding in $3  that  the slot problem is too idealized to describe resonance 
in an impinging shear flow, a flow with a non-impinging vortex sheet is analysed in 
$4. Our method of solution requires that the geometry be symmetric across the vortex 
sheet, so the flow of a vortex sheet into a, duct is considered (figure 3). In this flow 
the vortex sheet extends beyond the leading edge, so downstream vortical disturbances 
exist. Presumably this is one reason why this flow does admit resonant solutions. 
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It also seems necessary, in order to satisfy resonance criteria on ‘amplitude and 
phase ’, that there be (at least) two free non-dimensional parameters in the problem. 
In the slot problem (figure 2) the only parameter is the Strouhal number based on 
slot width, while in the duct-entry problem (figure 3) there is an additional length 
ratio. (Another way of viewing the role of finite shear-layer width in the mixing- 
layer-wedge flow is that  it provides a second parameter.) However, the existence of 
two parameters is probably not sufficient for resonance to occur : in calculations not 
reported here we were unable to find resonance when the slot flow was enclosed in 
an infinite duct. Admittedly, the final step in this analysis consisted of a numerical 
search for zeros of a complex-valued function, so the failure to find resonance might 
be considered inconclusive. 

The duct-entry problem (figure 3) was discussed by Mohring (1975). The solution 
that he described is inappropriate because i t  grows as einxx, with n an odd integer, 
as x+ co inside the duct. This solution does not oscillate spatially and its growth is 
independent of its temporal frequency. Mohring incorrectly refers to it as a ‘Kelvin- 
Helmholtz instability’; i t  is better described as an ‘edge singularity ’ associated with 
an ‘edge’ at infinity. Thus Mohring’s solution omits the spatially growing Kelvin- 
Helmholtz wave. That is why he concluded erroneously that this problem has no 
incompressible resonant solutions. 

Analysis of the flow in figure 3 is complicated by the exponentially unbounded 
growth down the duct of the vortex-sheet oscillations. For this reason, the analysis 
in $4 starts with a solution for the flow depicted in figure 4, having a plate inside 
the duct. Then the plate is moved to downstream infinity. I n  this way, a family of 
resonant solutions is found. 

2. Method of solution 
Consider a two-dimensional time-dependent disturbance to a horizontal mean flow 

containing a vortex sheet and horizontal flat plates. Away from the sheet and plates, 
the disturbance is irrotational and its complex velocity w(z) = u-iv is an analytic 
function of z = x+iy. On the solid plates v = 0, while across the vortex sheet the 
pressure and the vertical displacement of fluid particles must be continuous. These 
continuity conditions are most easily satisfied if the complex particle displacement 
x(z) = 5 - iq is introduced. Here ($(x, y), q(x, y)) is the displacement by the perturbation 
of the particle at (x, y) from its initial position. (The convenience of working with the 
dependent variable x was pointed out to me by Dr M. E. Goldstein.) The connection 
between x and w is w = DX/Dt, where as usual D/Dt = a/at  + Ua/ax for a uniform 
flow U in the x-direction. Under the assumption of small perturbations to a uniform 
flow, the momentum equation can be written as 

If [I denotes the jump across the vortex sheet of the bracketed quantity, then 
continuity of pressure across a vortex sheet lying along y = 0 requires [ap/ax] = 0 

[gig = 0. 

We will require that the flow geometry be symmetric with respect to reflection across 
the line y = 0 containing the vortex sheet. This allows x to be written in terms of 
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u1 x = --c 

UZ J J = O  

FIGURE 2. Slot problem. 

functions symmetric and antisymmetric in y. The condition of mass continuity 
requires that [7] = 0, so 7 must be symmetric, The corresponding [ is antisymmetric, 
as is seen from the Cauchy-Riemann relations. Consequently [, = - g2 = :A[, where 
5, (6,) is the limit of [ as the vortex sheet is approached from above (below). The 
mean velocity is U ,  ( U , )  above (below) y = 0. Of course A[ = [[I. Equation (2) now 
reduces to 

where 

D:A[ DiA[ 
Dt2 Dt2 

+- = 0, 

D. a a J=-+ui- ( i =  1,2) .  
~t at ax 

(3) 

If A[ has an ejwt time dependence, the solution to (3) is 

A[ = @{A e"+ X + B e"- X 1 3  (4a) 

where A and B are arbitrary constants (which are real with respect to i) and 

with 

- j f A  
6 -  * - $(l + A 2 )  ( U ,  + U2) '  

In  the following the factor ejwt will be suppressed. The two terms in (4a) are growing 
and decaying instability waves. In  (4) j denotes - 1, as does i in (1).  Two different 
letters are used because their i-dependence determines the analytic properties of 
functions of z, whereas their j-dependence reflects the behaviour with time; in 
analytical considerations j should be treated as real. This distinction between i and 
j is made to avoid confusion ; i t  will not figure importantly in the following. 

Equation (3) follows from pressure continuity and A7 = [r] = 0 follows from mass 
continuity. Furthermore, on any horizontal surface the condition of flow tangency 
is that 11 = 0. Because x is an analytic function away from the vortex sheet and 
boundaries, it  is determined by A[, Ay, the boundary condition 7 = 0, and its 
asymptotic behaviour at co . 

For the problems presently being considered, a conformal mapping of the z( = x + iy)- 
plane to the 7( = c+ iu)-plane exists which maps the vortex sheet and all boundaries 
onto the line u = 0. The vortex sheet may be taken to lie on -c < 5 < c provided 
that there are plates which extend to upstream and downstream co. The 7-plane is 
depicted in figure 2. It is essential that the geometry in the z-plane (e.g. figures 3 and 
4) is symmetric about the vortex sheet, for then opposing points above and below 
the sheet are mapped into opposing points; in other words, A[(x) = A[(5) when y is 
the image of x. 

It now follows from the Plemlj formulas (Roos 1969, p. 231) that 

~ ( 7 )  = [-ill = A[(t) dt + C7 + D] , 



Resonance i n  flows with vortex sheets and edges 279 

where C and D are real constants (real with respect to i), is a solution satisfying the 
jump and boundary conditions, and is bounded as r -+ CO. When the z-domain is 
unbounded it is appropriate to require that x tend to zero as T+ 00 ; then C = 0. When 
the flow is enclosed in an infinite duct in the z-plane C + 0. Branch cuts for the square 
roots in ( 5 )  lie along cr = 0, I[] > c.  Thus = 0 along the solid boundaries c = 0, 
151 > c because the right-hand side of ( 5 )  is real there, and [7] = 0 because the real 
part of the integral in ( 5 )  is continuous across the vortex sheet. The imaginary part 
of the integral suffers a jump of 2ni(c2 - 7,): A&z) so that the jump condition on E is 
met. Furthermore, ( 5 )  is the unique analytic function satisfying the jump and 
boundary conditions, and having no worse than a square-root singularity at [ = + c  
(Roos 1969). 

The solution ( 5 )  has been obtained for a symmetric geometry. For an asymmetric 
geometry conformal transformations can be applied separately to the upper and lower 
half-planes. In  the upper plane 7 is given by an expression like ( 5 ) ,  but with 6, 
appearing under the integral; in the lower plane 7 is given by a similar expression 
with 5, under the integral. Equating these expressions for 7 gives an integral equation 
which must be solved along with (2) for E, and E,. This poses a difficult mathematical 
problem. 

Equations (5)  and (4a) determine the oscillatory flow which accompanies a 
Kelvin-Helmholtz wave on the vortex sheet. They contain four unspecified constants : 
A ,  B, C and D .  From here on we consider only the case C = 0. Since homogeneous 
boundary conditions have been specified, ( 5 )  is an eigensolution. The amplitude of 
this eigensolution is arbitrary, and for this reason so is one of A ,  B or D .  The other 
constants, and the criterion for resonance, must be determined by imposing edge 
conditions. 

Referring to figure 2, because the vortex sheet leaves the upstream edge ( 5 )  must 
be made to satisfy ?( - c )  = 0 on (r = 0. Furthermore, in order that the perturbation 
velocity be finite at the trailing edge, the Kutta condition (Crighton 1981) 
a?( - c ) / a [  = 0 must be imposed. It follows from ( 5 )  that these conditions require 

rGy A$@) dt + D = 0, 

1 d  
( ( ~ - t ) : A C ( t ) ) d t  = 0. 

Equation (6a) follows immediately from ( 5 )  ; (6b) requires some manipulation before 
it can be written as a convergent integral. Note that by (4a) the left-hand sides of 
(6) are complex in the variable j, so both real and imaginary parts must vanish. 
Together, (6a) and (6b) determine two of the complex (with respect to j )  coefficients 
A ,  B and D. 

We have now constructed an eigensolution, valid for all w ,  which satisfies 
appropriate trailing-edge conditions ; however, nothing has been required of the 
downstream behaviour of this solution. In general, the downstream behaviour is not 
arbitrary. At least one further constraint of the type (6) must be imposed. This last 
constraint overspecifies the solution ; or alternatively it makes it so that solutions can 
exist only for certain frequencies, if they exist at  all. But because the constraints are 
complex-valued a second parameter, say d ,  in addition to frequency, is generally 
required to satisfy the downstream constraint. d is a parameter associated with the 
flow geometry (see figure 3). Thus one expects solutions only for certain values of o 
and d .  Such solutions are eigensolutions satisfying physically appropriate constraints, 
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and the pair ( w , d )  is the eigenvalue. These solutions could be imagined to arise 
spontaneously in the Aow ; they are the self-sustained oscillations presently being 
sought. 

3. Vortex sheet in a slot 
Previous analyses of the flow depicted in figure 2 were discussed in 5 1 .  The solution 

given by Mohring (1975) contains incorrectly evaluated integrals, but when these are 
evaluated properly it appears to be correct. His method for deducing this solution 
is quite different from that used here. For that reason it is hoped that the present 
reworking of this problem will not be considered redundant. 

For the present problem the z- and r-planes described in $2 are the same. Thus 
(4a) can be substituted directly into ( 5 )  to find 

and similarly for the edge conditions (6). It remains to specify the behaviour of x 
at the downstream edge, r = c. 

Suppose q(x) were known on the vortex sheet. Then since q(x)  = 0 for 1x1 > c on 
y = 0, the complex velocity that vanished as 171 + co would be 

in the upper half-plane and 

in the lower half-plane. This follows from Cauchy's formula (Roos 1969). Upon letting 
(r( -+ CO, substituting the definition of D/Dt, and noting that q( - c )  = 0, one finds that 

in the upper plane, 

in the lower plane. 

xr 
(9) 

xr 

u-iv+ 

It follows that the net mass flux through a large circle about the origin is ( U ,  - U,) q(c).  
So in the absence of oscillating sources in the flow we must have q ( c )  = 0. Thus 
Crighton & Innes' (1981) suggestion that q(c)  be non-zero appears to correspond to 
the introduction of a mass source. This conclusion drawn from (9) is based on the 
present requirement that q = 0 on the downstream plate. Howe (1981 b )  allowed y 
to be non-zero on x > c ,  regarding this as a model of downstream Tolmein-Schlichting 
waves. The above argument does not apply to Howe's model, because the excess mass 
flux is compensated there by boundary-layer oscillations. 

The condition q ( c )  = 0 implies 



where w+ = C E ~  and I,, I ,  are modified Bessel functions. These equations have a 
non-trivial solution only if 

2(w+-w-) I,(W+) I,(W-) = w+I,(w_)I,(w+)-w_I,(w+) Il(W-). (12) 

Because w- = -wT, the left-hand side of this is real and the right-hand side is 
imaginary. Thus both sides must vanish, which is clearly impossible as the left-hand 
side equals 4 Re (w+) ~ I , ( W + ) ~ ~  =I= 0. Thus we conclude that there are no solutions to the 
slot problem satisfying the appropriate edge conditions. 

As was mentioned in Q 1 ,  an analysis of the slot flow enclosed in an infinite duct also 
failed to yield resonant solutions. It appears that the condition ~ ( c )  = 0 prevents 
resonance ; the evolution of the shear flow downstream of the impingement edge seems 
to be the feature missing from these slot flows. Howe’s (1981 b )  model of boundary 
oscillations is one method for rectifying this situation. However, there is an ad hoc 
element to this type of model, which for the present we wish to avoid. Instead we 
examine the flow depicted in figure 3, which has a non-impinging semi-infinite shear 
layer. Although this flow may seem a bit contrived, nevertheless i t  could conceivably 
be the infinite-Reynolds-number limit of a realizable shear flow. The main purpose 
of the present paper is to show that incompressible resonance can occur in such a 
flow. 

4. Vortex sheet entering a duct 
Recognizing also that at least two non-dimensional parameters seem required to 

satisfy resonance criteria, the duct-entry flow of figure 3 seems a promising source 
of resonant solutions. A difficulty that arises in finding solutions for this flow can be 
seen immediately from ( 5 )  : A( becomes exponentially unbounded as x+ 00, so the 
integration over the vortex sheet may diverge. A device for avoiding this divergence 
is to add a downstream plate inside the duct (figure 4)  and then find the asymptotic 
solution for this flow as the leading edge of the plate tends to 00 ; the result should 
be a solution for the flow of figure 3, except in a neighbourhood of the ‘plate a t  
infinity’. (It is remarked in Q 1 that Mohring’s exponentially growing solution is really 
a singularity a t  the edge of this plate at infinity.) 

I n  order to apply the method of $2, a conformal mapping from the z-plane of figure 
4 to the 7-plane of figure 2 is required. The inverse of this mapping is 

z = 7-a-  1 -In (T-u)+Ki, (13) 

where the branch cut of the logarithm is along u = 0, 5 > a ;  recall that T = c+ia .  
The normalization in (13) is such that the duct height is 27c. Referring to figures 2 
and 4. one finds the relations 

d = c + a + l + l n ( c + a ) ,  I = c-a-l-ln(u-c) (14) 

Resonance in $ows with vortex sheets and edges 

by (7).  Collecting (6a ,  b)  and (10) and evaluating the integrals gives 

281 
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4 
f d- 

FIQURE 3. Duct-entry problem. 

x = o  

y = x  

x = - d  -1 y = o  - 
x = o  

y = - x  

FIQURE 4. Duct-entry with downstream plate. 

between a ,  c,  and d ,  1. The point 7 = a is the image of x = co inside the duct. Thus, 
as the edge inside the duct tends to infinity, c+a. Then (14) becomes 

d x 2c+I+In2c, a x c+e-l-l. (15) 

Using (13) to substitute 5 for 5 in (4a), and substituting the result into ( 5 ) ,  gives 

where constants have been absorbed into A and B. The edge conditions (6) can be 
rewritten similarly. It remains to impose a downstream constraint on the solution, 
and to find the asymptotic behaviour when a-tc .  

It can be shown, essentially by the method used in Durbin (1979), that, as 7 + c  
and a+c, x can be expanded into two series of the form 

x = ( C - 7 ) - " +  (O(1) + O(c-7) +o(c-7)2. .  .), 

+ (c - 7 )  -4 (0( 1 ) + O(c - 7) + O( c - T ) ~ .  . . ) ( 17) 

(plus terms O(C-T) - ' - ) .  The explicit forms of the O(1) terms are given in 

1 5: 

(1 - 5 )  ( 5 + [ a - c ] / [ c - 7 ] ) ' +  
dx+ ... A ec"+ 

[( 1 + [ a - C ] / [ C  -TI)"+ x = ( C - T ) - E +  

f (c+x)' et+xdx+.. .] ,  (18) e"- dx- A 
(c+5)4 

-c (C-X)E- +: -e (c-z)"+ff 

where f is a principal value and f is the generalized interpretation of a divergent 
integral (Lighthill 1975). The expansion (1 8) breaks down when I c - 7 I $ a - c  = eWz-l, 
i.e. in a small neighbourhood of the 'edge a t  infinity'. This edge was introduced as 
an artifice in our solution procedure, so the solution in its vicinity is not of interest. 
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The first term in (18) is the Kelvin-Helmholtz wave, which, using (13) to substitute 
for c--7, grows like ee+z as x+ co. The second term in (18) is an edge singularity, 
which grows like efz ; clearly such growth is unphysical and must be eliminated. Thus 
our downstream condition is that the coefficient of ( ~ - - 7 ) - f  in (18)  vanishes: 

(C+X)f  

--c (C-X)E++i  
eE+%dx = 0. 

( C + X ) i  

-c (c - x)E- + t D - B S  eE- dz - A 

Note that this condition is analogous to (10). 
The complex coefficients, say A and B, and real parameters c and w ,  of our problem 

are now determined by the three complex equations (6a, b )  and (19) .  On letting a+c 
in (6) one finds that the integrals diverge if Re ( E + )  2 i. In what follows it will be 
required that 

or, by use of (4b), that 

Here w" is the non-dimensional frequency 

where H is the duct height. 
It is not necessary that condition (20) be imposed. When (20) is not satisfied it is 

appropriate to interpret the divergent integrals in (6) and in (22) in a generalized 
sense. Or, alternatively, the integrals involving E +  can be evaluated by analytic 
continuation in the complex E-plane. 

Condition (6 )  and (19) can be combined, and when (20) is satisfied they give the 
relation that determines w" and c:  

with 

w = CE. The integrals in (22)  have been manipulated to put them into forms that 
converge under (20) .  Equation (21) is the eigenvalue relation defining the resonance 
condition. 

Roots of (21) were found numerically. Library subroutines were used to evaluate 
integrals by the Romberg method and to find roots by the secant method. The secant 
routing required fairly good initial guesses : these were obtained by printing out tables 
of the modulus of the left-hand-side of (21)  and searching through them for minima. 
Starting from these, the roots w" and c were found. d was obtained from c by (15). 

Figures 5 and 6 show the roots 0" and d as functions of A. At given h these figures 
show a set of frequencies and distances at  which resonance occurs. The limit &(A)  
defined by (20) is also shown in figure 5.  Our numerical algorithm failed when roots 
approached this curve, so it was not possible to determine how this limit is 
approached. The curves shown in figure 5 simply terminate where we stopped tracing 
them numerically. Often this was where the numerical algorithm began to fail; either 
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284 P.  A .  Durbin 

0.2 

11111111111 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

x 
FIGURE 5. Resonant frequencies versus velocity difference. 

because the curve where integrals diverge was approached, or because the oscillations 
of the integrand decreased numerical accuracy. Presumably, the curves shown in 
figure 5 extend to all values of A and constitute an infinite set of resonant frequencies. 

Figure 6 shows the distances of the plate from the duct at which resonance occurs. 
These curves appear to coalesce as A is increased. However, our numerical results do 
not permit us to say absolutely that the curves converge without crossing. 

The solution that has been derived for the duct-entry problem provides an instance 
of resonance in incompressible flow. In order to obtain a simple exact solution it was 

FIGURE 6. Resonant distances versus velocity difference. 
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necessary to consider a highly idealized flow. Because the downstream vortex sheet 
is bounded by walls on both sides, the duct-entry flow is quite different from the 
impinging mixing layer (figure 1).  Also, the mixing layer has finite width, while the 
vortex sheet is infinitely thin. For these reasons little comparison can be made 
between the present results and existing experiments. In order to study experimentally 
the flow of figure 3 one would have to ensure that the duct height and instability 
wavelength were large compared with the shear-layer thickness. 

I am grateful to Dr M. E. Goldstein for discussing this analysis with me. 
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